
The First TSME International Conference on Mechanical Engineering 
20-22 October, 2010, Ubon Ratchathani 

 

 

A mesoscale modeling technique for studying the dynamic oscillation of Min 
proteins: Pattern formation analysis with the lattice Boltzmann method 

 
Somchai Sriyab1,Wannapong Triampo 2,3 

1 Department of Mathematics, Faculty of Science, Chiang Mai  University, Chiangmai, Thailand 
2 R&D Group of Biological and Environmental Physics, Department of Physics, Faculty of Science, Mahidol University, Bangkok, 

Thailand 
3Institute of Molecular Biology and Genetics, Mahidol University, Nakhon Pathom, Thailand 

 
Abstract 
 

We present an application of the Lattice Boltzmann Method (LBM) to study the dynamics of min 
proteins oscillations in Escherichia coli. The oscillations involve on MinC, MinD and MinE proteins, which 
are required for proper placement of the division septum in the middle of a bacterial cell. Here, the LBM is 
applied to a set of the deterministic reaction diffusion equations which describes the dynamics of the Min 
proteins. This determines the midcell division plane at the cellular level. We specifically use the LBM to 
study the dynamic pole-to-pole oscillations of the min proteins in two dimensions. We observe that Min 
proteins pattern formation depends on the cell’s shape.  The LBM numerical results are in good 
agreement with previous findings, where other methods were applied, and agree qualitatively well with 
experimental results. Our results indicate that the LBM can be an alternative computational tool for 
simulating the dynamics of these Min protein systems and possibly for the study of complex biological 
systems which are described by reaction- diffusion equations. Moreover, these findings suggest that LBM 
could be also useful for the investigation of possible evolutionary connection between the cell’s shape and 
cell division of E. coli. The results show that the oscillatory pattern of Min protein is the most consistent 
with experimental results when the dimension of the cell is 1x2. This suggests that as the cell’s shape is 
close to being a square, the oscillatory pattern no longer places the cell division of E. coli. at the proper 
location. These findings may have a significant implication on why, by natural selection, E. coli is 
maintained in a rod shape or bacillus form. 
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1. Introduction 
 Cell division is the process in which 
a cell separates into two daughter cells after 
the DNA has been duplicated and distributed 
into two regions. For a successful cell 
division, the cell has to determine the optimal 
location of cell separation. In E. coli and other 
rod-shape bacteria, two processes are known 
to regulate the placement of the division site: 
nucleoid occlusion [1] and the oscillation of 
Min proteins [2].  

Min proteins which control the 
placement of the division site are the MinC, 
MinD, and MinE proteins [2]. Experiments 
involving the use of modified proteins have 
shown that MinC is able to inhibit the 
formation of the FtsZ-ring [3]. It has been 
reported that tubules of FtsZ protein from 
cytoskeleton structure involved septum 
formation [46]. The FtsZ moves from the 
cytoplasm to inner membrane at the mid-cell 
location just prior to cell division and 
assembles the Z-ring which relocates to the 
cytoplasm after division. MinD, on the other 
hand, is an ATPase which is connected 
peripherally to the cytoplasmic membrane. It 
can bind to MinC and activate MinC into 
function [4, 5]. Recent studies have illustrated 
that MinD recruits MinC to the membrane. 
This suggests that MinD stimulates MinC by 
concentrating them near the presumed site of 
activation [6, 7].  MinE is required to give site 
specificity to division inhibitor, which suggests 
that MinE acts as a topological specificity 

protein capable of recognizing the mid-cell 
site and preventing the MinC division inhibitor 
from acting at that site [8]. Its expression 
results in a site-specific suppression of the 
MinC/MinD action so that the FtsZ assembly 
is allowed in the middle of the cell, but is 
inhibited at other sites [2]. In the absence of 
MinE, the MinC/MinD is distributed 
homogeneously over the entire membrane. 
These results in a complete blockage of the 
Z-ring formation and the subsequent 
formation of a long filamentous cell which 
would fail to divide [6, 7, 9, 10]. By a 
fluorescent labeling technique, MinE was 
shown to attach to the cell wall only in the 
presence of MinD [11, 12]. Since MinD 
interacts with MinC, it is likely that they 
oscillate together. This results in a 
concentration of the division inhibitor at the 
membrane on either cell end, alternating 
between being high or low every other 20 
seconds, so that the period of oscillation is 
about 40 seconds [6, 7]. MinE is not only 
required for the MinC/MinD oscillation, it is 
also involved in setting the frequency of the 
oscillation cycle [9]. Several pieces of 
evidence indicate that the MinE localization 
cycle is tightly coupled to the oscillation cycle 
of MinD. Experimentally, microscopy of 
fluorescently labeled proteins involved in the 
regulation of E. coli division have uncovered 
coherent and stable spatial and temporal 
oscillations of these three proteins [13]. The 
proteins oscillate from one end of the 
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bacterium to the other and move between the 
cytoplasmic membrane and the cytoplasm. 
The detailed mechanism by which these 
proteins determine the correct position of the 
division plane is currently unknown, but the 
observed pole-to-pole oscillations of the 
corresponding distribution are thought to be 
of functional importance. 
 

A number of mathematical models of 
Min protein oscillation have been proposed 
and studied [11, 14, 15, 16, 17, 18]. These 
models are based on macroscopic nonlinear 
reaction-diffusion equations (RDE) and are 
solved using conventional finite difference 
schemes. Howard et al. [14] proposed an 
RDE model in which the reaction consisted of 
protein’s association to the membrane and its 
dissociation from the membrane. This model 
incorporates the event that MinE is recruited 
to the membrane by membrane-associated 
MinD. Later, Meinhardt et al. [15] showed that 
the pattern formation of the Min system 
requires the interaction of a self-enhancing 
component and its long-ranging antagonists. 
They included the dynamics of FtsZ proteins 
in their model. More recently, Kruse et al. 
[16] found that the clustering of membrane-
bound MinD, connection with attachment and 
detachment rates, depend on the 
concentration of molecules present on the 
membrane. However, the Kruse model 
requires unrealistically rapid membrane 
diffusion of MinD.  Since most of models 
mentioned above applied only to uniformly 
rod-shaped wild-type cells, Huang and 
Wingreen [18] proposed the model to 

reproduce the experimental oscillations in not 
only rod-shaped cells, but also in round and 
ellipsoidal cells. All of these models 
successfully generate the oscillation patterns 
and are in agreement with the experimental 
results.  Huang et al. [11] included the 
interactions of MinD and MinE based on 3D-
simulations. All these models deal with the 
macroscopic behavior, modeled by the 
reaction-diffusion equations and do not 
provide microscopic details. This present 
work focuses on the reaction of MinD and 
MinE and presents an alternative method, 
called the lattice Boltzmann method [19], for 
determining the position of cell division of E. 
coli which depends on the mechanism of Min 
system in the microscopic level.  

The LBM scheme has been 
particularly successful in simulating fluid-flow 
and useful for a broad variety of complex 
physical systems, finding applications in 
different areas, such as in hydrodynamic 
systems [19, 20], magneto-hydrodynamics 
[21, 22, 23, 24], multiphase and multi-
component fluids [25], advection-dispersion 
[26], reaction-diffusion [27, 28, 29, 30] and 
blood flow [31, 32, 33]. Most research 
reported in the literature is limited to the 
applications of LBM to the Navier-Stokes 
equations [34, 35]. Its application to complex 
biological systems at the cellular and the 
molecular biological levels is rare. 

In this work, we propose the use of 
LBM to study the partitioning of a bacterial 
cell during cell division.  We compare our 
two-dimensional results with those obtained 
by numerically solving a set of deterministic 
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coarse-grained coupled reaction-diffusion 
equations to demonstrate the validity of the 
proposed LBM. In particular, we investigate 
oscillatory pattern formation in this process. 

 
2. Reaction-diffusion models for Min 
protein oscillation 

We consider an RDE model 
consisting of a set of four partial differential 
equations in order to study the Min protein 
oscillation .This is a version that is one 
dimensional in the space variable, given by 
Howard et al in 2001 [14]. Though the model 
is straightforward and relatively simple, it 
gives the correct placement of the division 
septum in E. coli. The mechanism is 
governed by the time rates of change of the 
protein densities due to the diffusions of 
MinD and MinE and to the mass transfer 
between the cell membrane and the 
cytoplasm as schematically shown in Fig. 1. 
Based on experimental results [7], showing 
that the MinC dynamics are similar to those 
of MinD, we shall leave out the equations for 
the MinC proteins. In dimensionless form, the 
dynamics may be given by the following 
equations. 
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  where 2∇  is the Lapacian operator. We let 
{ , , , }s D d E e=  represent the cytoplasmic 

MinD, the membrane bound MinD, the 
cytoplasmic MinE, and the membrane bound 
MinE, respectively. Here, sρ  is the mass 
density of particles of species s  at time t  
and position ( , )x y . sR  is a reaction term 
which depends on the density of the  species 
( )sρ  and on the density of the other species 
that react with species s . sD  is the diffusion 
coefficient, 1σ  is the parameter connected to 
the spontaneous association of MinD to the 
cytoplasmic membrane, 1σ ′  is that which is 
connected to suppression of MinD 
recruitment from the cytoplasm by the 
membrane-bound MinE, and the 2σ  reflects 
the rate that MinE on the membrane drives 
the MinD on the membrane into the 
cytoplasm. We let 3σ  be the rate that 
cytoplasmic MinD recruits cytoplasmic MinE 
to the membrane, while 4σ  describes the 
rate of dissociation of MinE from the 
membrane to the cytoplasm. Finally, 4σ ′  
reflects the cytoplasmic MinD suppression of 
the release of the membrane-bound MinE. 
The diffusion on the membrane occurs at a 
much smaller time scale than that in the 
cytoplasm. It seems, therefore, reasonable to 
set dD  and eD  to equal zero. In this 
dynamics, we allow the Min protein to bind 
to/unbind from the membrane, but not for it to 
be degraded in the process. Thus, the total 
amount of each type of Min protein is 
conserved. The zero-flux boundary condition 
will be imposed. This boundary condition 
needs a closed system with reflecting or 
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hard-wall boundary conditions. The total 
concentration of Min proteins is conserved. 

 
  3. The Lattice Boltzmann Method 

The Lattice Boltzmann Method (LBM) 
is a numerical scheme evolved from the 
Lattice Gas Model (LGM) in order to 
overcome the difficulties encountered with 
that model [19, 36]. The LGM or lattice gas 
automata is a method to determine the 
kinetics of particles by utilizing a discrete 
lattice and discrete time.  It has provided 
insights into the underlying microscopic 
dynamics of the physical system whereas 
most other approaches focus only on the 
solution to the macroscopic equation. 
However, the LGM, in which the particles 
obey an exclusion principle, has microscopic 
collision rules. These rules are very 
complicated and require many random 
numbers. These random numbers create 
noise or fluctuations. An ensemble averaging 
is then required to smooth out the noise in 
order to obtain the macroscopic dynamics 
which are the results of the collective 
behavior of the many microscopic particles in 
the system and which are not sensitive to the 
underlying details at the microscopic level. 
The ensemble averaging consumes computer 
resources, which leads to an increase in the 
amount of computational storage required 
and which in turn lead to a reduction in the 
computational speed. For these reasons, the 
LBM is used only when one is interested in 
the evolution of averaged quantities and not 
in the influence of the fluctuations.  The LBM 
gives a correct average description on the 

macroscopic level of a fluid. Though LBM is 
based on particle dynamics, its central focus 
is the averaged macroscopic behavior, 
leaving out the fluctuation.  It is relatively 
easy to implement the more complex 
boundary condition such as the curved 
boundary [37] when compared with the 
conventional grid-based numerical 
integration. In addition, for the model whose 
dynamics is very complex, use of parallel 
computing [19] in combination with LBM 
algorithm would be greatly beneficial in terms 
of simulation time in a straight forward 
manner. 

The LBM can also be viewed as a 
special finite difference scheme for the kinetic 
equation of the discrete-velocity distribution 
function. While the traditional computational 
methods in fluid dynamics, such as finite 
element method, finite difference method and 
finite volume method, solve macroscopic fluid 
dynamics equations, LBM solves a problem 
at a microscopic level in order to recover a 
particle density and velocity from the 
macroscopic properties [38]. The simplicity 
and the kinetic nature of the LBM are among 
its appealing features. The LBM consists of 
simple arithmetic calculations and is, 
therefore, easy to program. In the LBM, the 
space is divided into a regular Cartesian 
lattice grid as a consequence of the 
symmetry of the discrete velocity set.  Each 
lattice point has an assigned set of velocity 
vectors with specified magnitudes and 
directions connecting the lattice point to its 
neighboring lattice points. The total velocity 
and particle density are defined by specifying 
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the number of particles associated with each 
of the velocity vectors. The microscopic 
particle distribution function, which is the only 
unknown, evolves at each time step through 
a two-step procedure: convection and 
collision. The first step, convection (or 
streaming), simply advances the particles 
from one lattice site to another lattice site 
along the directions of motion according to 
their velocities. This feature is borrowed from 
the kinetic theory. The second step, or 
collision, is to imitate various interactions 
among particles by allowing for the relaxation 
of a distribution towards an equilibrium 
distribution through a linear relaxation 
parameter. The averaging process uses 
information based on the whole velocity 
phase space.  
 
The lattice Boltzmann equation can be 
viewed as a discretized version of the 
Boltzmann equation. LBM can be derived 
directly from the simplified Boltzmann 
Bhatnagher-Gross-Krook (BGK) equation [39, 
40].  The discrete form of the lattice 
Boltzmann equation is 

( , ) ( , ) ( , )f r tc t t f r t r tα α α α+ Δ + Δ = +Ω    (14) 
where fα is the distribution function at space 
r and time t . With the discrete velocitycα , 
the particle distribution travel to the next 
lattice node in one time step .tΔ  The 
collision operator αΩ differs according to the 
model details. In the lattice Boltzmann 
Bhatnagher-Gross-Krook (LBGK) that we 
use, the particle distribution after propagation 
is relaxed toward the equilibrium distribution 

( , )eq
if r t according to 

         
1( , ) ( ( , ) ( , ))eqr t f r t f r tα α ατ

Ω = − −             (15) 

The relaxation parameter τ  determines the 
kinematic viscosity υ of the simulated flow 
according to 
                  (2 1) / 6υ τ= −  

The Lattice Boltzmann Method, as 
the name suggests, works on given lattice 
depending on the field of applications, 
Traditionally, the interested systems are 
named  DXQY, where X is the number of 
dimensions and Y determines the number of 
distinct lattice velocities. 

The equilibrium distribution function 
eqf is defined to be the same for one, two, 

and three dimensions as 
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while the weight constant and the lattice 
velocities for D2Q9 are 
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and the weight constant and lattice velocities 
for D3Q27 are 
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The density ρ  and flow velocity u can be 
calculated from 
              fα

α
ρ = ∑                   (23) 

             u c fα α
α

ρ = ∑               (24) 

 For simplicity, the size of a cell and the 
length of time step will be normalized to 1, 
which leads to 1c = , and will not be 
included in the formulas. We summarize LBM 
as 
                     

1( , 1) ( , ) ( )eqf r c t f r t f fα α α α ατ
+ + − = − −  (25) 

 We use Chapman-Enskog analysis to obtain 
the relation between the diffusion coefficient 
and relaxation time as following; 
                                                    

1 1( )
3 2s sD τ= −                                 (26) 

We consider the two dimensional Lattice 
Boltzmann method (D2Q9) for the reaction-
diffusion equations in the referenced model. 
Let ( , )sf r tα  be the one particle distribution 
function of species s  with velocity cα at 
some dimensionless time t and 
dimensionless }{. 1,2,3,4r s = space 

}{. 1,2,3,4r s = represent the cytoplasmic 

MinD, membrane-bound MinD, cytoplasmic 
MinE and membrane-bound MinE, 
respectively. The Lattice Boltzmann equation 
for ( , )sf r tα  can be written as 
 
                                 

( , ) ( , ) ( , )s s sf r tc t t f r t r tα α α α+ Δ + Δ = +Ω
                       (54) 
where s

αΩ is the collision operator for 
species s  and depends on the distribution 
function sfα . The collision operator s

αΩ can 
be separated into two parts [27]. The first 
term is the elastic collision function, which is 
taken to be of Boltzmann Bhatnagher-Gross-
Krook (BGK) approximation with a single 
relaxation time sτ . The second term is 
reactive collision term, i.e, 
                          

( , )1( , ) ( ( , ) ( , ))s s eq s sr t f r t f r tα α α αφτ
Ω = − − +

                           (55) 
 where ( , )eq sfα  is the equilibrium distribution. 
Here, we use the simple equilibrium 
distribution function corresponding to a 
system with zero mean flow: 
 
                                            

( , )eq s s
sfα αω ρ=    

             (56) 
where s

αω is weight function which depends 
on the lattice symmetry [21].  

The density of particle species s  is 
denoted by sρ . For the reactive term sφ , we 
use the simple isotropic form 
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s

s sRαφ ω=                       (27) 
The term sR  is the non-linear reaction term 
and depends on the density of reacting 
species.  

 
4. LBM numerical implementation 

The simulation process consists of 
two steps that are repeated in each time 
step. To summarize, we will now implement 
the numerical evaluation governed two 
equations 
Collision: 

,* ( , )1( , ) ( , ) ( ( , ) ( , ))s s s eq s s
sf r t f r t f r t f r t Rα α α α αωτ

= − − +

 Streaming: ,*( , ) ( , )s sf r c t f r tα α α+ =  
The first step is the collision step 

which accounts for the collision changes due 
to the movement of particles. The second 
step is the streaming step, in which the 
actual movement of the particles takes place 
throughout the grid. The collision step only 
changes the distribution of the particles for all 
particle distribution functions. The most time 
consuming step is the calculation of ( )eqfα  
for which we need to calculate the density 
ρ and velocity u  first. The streaming step 
consists only of copying the distribution 
function fα  from position r  to the 
neighboring r cα+ , as shown in Fig. 2. For 
each cell, all distribution functions are copied 
to the adjacent cell in the direction of the 
lattice vectorcα  . Hence, for the cell with the 
coordinates [i, j] the distribution function for 
the lattice vector pointing upwards is copied 
to the upward distribution function of cell [i, j 
+ 1]. As the lattice vector 0c does not point 

anywhere, its particle distribution function is 
not changed in the streaming step. The only 
trick is, when writing a program that performs 
the streaming, for each directioncα , there 
should be a do loop to copy the distribution 
function fα  in the opposite direction to that 
of cα . This is necessary to prevent any 
overwriting of distribution functions that are 
needed for the streaming of another cell. 

The boundary treatment is an 
important issue in the LBM simulations and 
research advancements are still being made 
[41, 42]. The simplest boundary condition for 
LBM simulations is the bounce-black 
scheme, i.e., close to the boundary the fluid 
does not move at all. Hence, each Lattice 
Boltzmann cell next to a boundary should 
have the same amount of particles moving 
into the boundary as moving into the 
opposite direction. This will result in a zero 
velocity, and can be imagined as reflecting 
the particle distribution functions at the 
boundary. The reflection process is shown in 
Fig. 3, for which only the velocities normal to 
the boundary are reflected. For the 
implementation this means that boundary and 
fluid cells need to be distinguished. A flag 
array has to be introduced and initialized to 
declare all boundary cells as ”wall” and all 
inner cells as ”fluid”. Here the flag array had 
to be checked, and if the neighboring cell is 
a boundary cell, the opposite distribution 
function from the current cell would be taken. 
The bounce-back scheme is widely used in 
the treatment the hard wall boundary 
condition. However, we found that the 
boundary condition is not accurate for the 
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diffusion system. To deal with this, we use 
the mirror-image method suggested by 
Zhang et al [43]. As shown in Fig. 4, if the 
node B  is a boundary node, it will see their 
image in node I . The distribution functions 
are also defined at the image node, which 
serves as the missing distribution function to 
the real node. The exact form of the 
distribution functions at the image cell 
depends on the specific boundary. Here, we 
use the impermeable boundary which is 
appropriate for the reaction-diffusion. When 
the boundary is impermeable, the distribution 
functions at the imaginary node take the 
mirrored distribution functions at their real 
corresponding node. For the example shown 
in Fig. 4, the pro-collision and pre-streaming 
distribution functions at the imaginary node 
I  are 

                                   

1 3

5 6

8 7

( , ) ( , )
( , ) ( , )
( , ) ( , )

f I t f B t
f I t f B t
f I t f B t

=
=
=

 

 
This boundary condition is suitable 

for low speed such as diffusion system, while 
the bounce-back boundary condition is 
suitable for high speed flows such as in 
hydrodynamic systems. 
 

We implemented the LBM, given in 
Section 3, on a PC using C programming to 
simulate the two-dimensional model. In the 
simulation, we use the same parameters as 
those given by Howard et al. [14], namely 
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However, the LBM algorithm needs all 
parameters to be dimensionless. We 
therefore transform the original parameters 
by letting 
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where ,  t rδ δ  and 0ρ  are, respectively, 
the time step, grid spacing, and the unit of 
concentration. Here, we set 0 1/ .mρ μ= . 
The relaxation time sτ  is calculated by 
equation (53). The initial numbers of MinD 
and MinE are randomly initialized as 3000 for 

Dρ , 170 for Eρ  and 0 for dρ  and  eρ . 
Each simulation goes through iterations for 
10,000 seconds of time steps. To eliminate 
transient behavior we throw away the first 
tens seconds into the iterations. We allow the 
proteins to diffuse in the directions of x- and 
y-axes and assume that the diffusion is 
isotropic. For the case of a two-dimensional 
cell division, we used 50x100 grids to 
simulate the bacterium (unless otherwise 
stated), being 1 2×  micron in size. The LMB 
scheme is D2Q9. We choose discrete space 
steps  -22 x 10x y mδ δ μ= =  and time 

step 44 x 10tδ −=  second. We set 
2

0 1/ mρ μ=  as the concentration unit.  
 

 
 
 
 



The First TSME International Conference on Mechanical Engineering 
20-22 October, 2010, Ubon Ratchathani 

 

5. Results and discussion 
In two dimensions, we plot the time 

evolution for the concentration of oscillating 
MinD as shown in Fig. 5, and that of MinE as 
shown in Fig. 6. The concentrations of Min 
proteins are homogenous in the y axis. The 
two proteins predominantly oscillate in the x 
axis.  We compared our computational 
results, Figure 5 (A) and Figure 6 (A), with 
the experimental results of Unai et al. [47] 
and Junthorn et al. [44], Figure 5 (A) and 
Figure 6 (A), and found they are in qualitative 
agreement. It is evident from both numerical 
and experimental data that MinDs appear 
near the polar zone as its intensity grows. 
After  that,  the  intensity  decreases,  
leading  to  an  increase  at  the opposite 
pole. It should be emphasized that MinD 
localizes at the polar zone for relatively 
longer time and suddenly switch to the 
opposite pole. Therefore, high 
concentrations of MinD are mostly found in 
the polar region. As for the distribution 
pattern of MinE, the formation is very 
consistent with experimental data reported in 
[44], namely, it collectively diffuses from the 
vicinity of midcell to the left edge around the 
polar zone and immediately returns to the 
midcell area. Fig. 7 shows time averages of 
MinD and MinE concentrations. The average 
concentration of MinD is minimum while that 
of MinE is maximum at midcell. These 
patterns once again agree well the 
experimental results. 
 

Next, we study the models via LBM 
to investigate the relationship between a 

bacterial shape and the distribution patterns 
of Min proteins. The goal is to understand 
whether Min proteins dynamics is related to 
or determine the shape of E. col., and if so, 
in what way. The numerical data might be 
able to explain why E. coli is rod shaped. 
Hence, we simulated the Min protein 
oscillation for bacterial cells of several 
shapes, gradually deviating from an 
elongated shape and becoming closer to 
being a square, as shown in Figs. 8-10.  
Compared to the pattern seen in Figure 7, 
the dynamic patterns shown in Figs. 8 and 9, 
with cell dimensions 2x3 and 3x4 
respectively, appear to indicate that the 
intensity of MinD is maximum away from the 
poles, while that of MinE is maximum away 
from the midcell area. When the shape of the 
cell becomes square, both Min proteins seem 
to diffuse all over the cell and are not 
confined to the poles or the midcell (see also 
Figs. 11). In Figures 8-9, it is clearly seen 
that the time-average concentrations of MinD 
(MinE) are no longer predicted by the model 
to be lowest (highest) at the center of the 
length of the cell. Moreover, MinD and MinE 
in a square-shaped cell perform repeated 
lateral movements suggesting that these Min 
proteins do not assemble at the poles or 
ends of the axis (there being no obvious axis 
of the cell length) but can, in fact, assemble 
anywhere in the cell. Compared to those 
results by Huang and Wingreen[18], they  
also suggested that the Min protein comprise 
a general cell geometry detection mechanism 
that can dynamically reorganize division site 
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placement in response to changes in cell 
shape. 

This result suggests that protein 
oscillation governing cell division should not 
occur when an E. coli cell is square or 
circular in shape. In other words, evidence 
from the present study indicates that the Min 
system exerts spatial control on division site 
positioning in an elongated- or rod-shaped 
cell, and gives rise to abnormal patterns of 
oscillations in a square or rounded cell. This 
leads us to believe that Min protein oscillation 
has a significant role with cell evolution. This 
may be the reason why E. coli cell is 
generally existed in a rod shape. It may be 
useful to mention that gram-negative, rod-
shaped cells change their sizes under 
different growth conditions. In a rich medium 
they are larger in length and width, but the 
proportions remain the same [45]. More 
precise calculations can be made concerning 
the surface area and volume of spaces 
needed for MinD and MinE movement and 
assembly. In addition, as far as the symmetry 
of the space is concerned, it may be more 
likely that positioning of the nucleoid could 
play a very significant role in the 
determination of division sites in rod or round 
shaped cells.   
6. Concluding remarks and future works 

Understanding of Bacteria cell 
division is central for an understanding of 
microorganism as well as the origin of the 
life.  This research has utilized the two 
dimensional LBM to investigate the dynamic 
pole-to-pole oscillations of min proteins, a 
mechanism used to determine the middle of 

a bacterial cell for division. We have 
developed a numerical scheme based on the 
LBM to simulate the coarse-grained coupled 
reaction-diffusion equations model used to 
describe the MinD/MinE interaction in two 
dimensions. Good agreement between the 
experimental and numerical results is found, 
such as the time evolution of the MinD and 
MinE with the DIC monograph as observed in 
experiments. In addition, we have also 
investigated the possible evolutionary 
connection between cell shapes and cell 
division of E. coli.  

The LBM approach provides a fast 
computational tool to study the deterministic 
models of protein oscillation. This finding 
suggests that the LBM is a useful scheme for 
simulating biological systems at the cellular 
level, especially those which are governed by 
the reaction-diffusion equations. In a future 
work, we will generalize the current LBM so 
that it can be used to study the effects of in- 
homogeneity in the intracellular space and 
the possibility of an asymmetrical cell 
division. Since the LBM is a method based 
on kinetic theory, it should be a suitable 
alternative for studying the effects of various 
factors on cell division of a bacterium. Lastly 
with the main advantage of the LBM in which 
the particle interpretation allows the use of 
very simple boundary conditions so that the 
parallel implementation may be used even for 
very complex cell geometry.   
 
Acknowledgements 

 We would like to acknowledge several 
colleagues who contributed in different ways 



The First TSME International Conference on Mechanical Engineering 
20-22 October, 2010, Ubon Ratchathani 

 

to this work. The research funding is 
supported by the National Center for Genetic 
Engineering and Biotechnology (BIOTEC), 
The Thailand Research Fund (TRF),  The 
Thai Center of Excellence in Physics 
(THEPs), and The Thailand’s Software 
Industry Promotion Agency (Public 
Organization). 

 
References 

 
[1]  C.L.Woldringh, E.Mulder , P.G.Huls  and 
N. Vischer , Toporegulation of bacteria  
division according to the nucleiod occlusion 
model, Res. Microbiol. 142(1991) 309-320. 
 [2] P.A.J. De Boer and R.E. Crossley, A 

division inhibitor and a topological the 
specificity factor coded for by the minicell 
locus determine proper placement 
ofdivision septum in E.coli., Cell. 
56(1989) 614-649. 

[3]   P.A.J. De Boer, R.E. Crossley  and  L.I. 
Rothfield., Central role for the Escherichia  
coli. Min C gene product in two different cell 
division inhibition systems, Proc. Natl. Acad. 
Sci. USA..  87(1990) 1129-1133. 
[4] P.A.J. De Boer, R.E. Crossley., A.R. 
Crossley., Rothfield L.I, The MinD protein   is 
a membrane ATPase required for the correct 
placement of the Escherichia     coli   division 
site. EMBO J. 10(1991) 4371-4380. 
[5]  J. Huang  J, C. Cao and J. Lutkenhaus, 
Interaction between FtsZ and inhibitors  of  
Cell division, J. Bacteriol. 178(1996) 5080-
5085. 
 

[6]   Z. Hu and J. Lutkenhaus , Topological 
regulation of cell division in E.coli involves 
rapid pole to pole oscillation of the division 
inhibitor MinC under the control of MinD and 
MinE, Mol. Microbio, 34(1999), 82-90. 
[7]   D.M. Raskin and P.A.J.De Boer, Min 
DE-dependent pole to pole oscillation of  
division inhibitor MinC in E.coli, J. Bacteriol. 
181(1999) 6419-6424. 
[8]   X .Fu, Y.L. Shih, Y.Zhang and L.I. 
Rothfield. The MinE ring required for   proper   
placement of the division site is a mobile 
structure that changes its cellular   location 
during the Escherichia coli division cycle. 
Proc Natl Acad Sci  U S A.  98(2001) 980-
985. 
[9]   D.M. Raskin and P.A.J.De Boer, Rapid 
pole-to-pole oscillation of a protein required 
for directing to the middle of E.coli, Proc. 
Natl. Acad. Sci, USA. 96(1999)  4971-4976. 
[10]  S.L. Rowland, X .Fu, M.A. Sayed, Y. 
Zhang,W.R.Cook and L.I.Rothfield,Membrane 
redistribution of the Escherichia coli MinD 
protein induced by MinE, J  Bacteriol. 
182(1997) 613-619. 
[11] K.C. Huang, Y. Meir  and N.S. 
Wingreen, Dynamic structures in E.coli: 
Spontaneous formation of MinE rings and 
MinD polar zones, Proc. Natl. Acad. Sci  
USA, 100(2003) 12724-12728. 
 [12]   D.M. Raskin and P.A.J.De Boer. The 
MinE ring: an FtsZ-independent cell  
Structure required for selection of the correct 
division site in E. coli. Cell.  91(1997) 685-
694. 
 



The First TSME International Conference on Mechanical Engineering 
20-22 October, 2010, Ubon Ratchathani 

 

[13]  C.A. Hale, H. Meinhardt., P.A.J. De 
Boer, Dynamic localization cycle of the cell 
division regulator MinE in E.  coli. EMBO J. 
20(2001) 1563-1572. 
[14]  M. Howard, A.D. Rutenberg and S. De 
Vet, Dynamic Compartmentalization of 
Bacteria: Accurate Division in E.coli, Phys. 
Rev. Lett., 87(2001) 278102(1)- 278102(4). 
[15] H. Meinhardt and P.A.J. De Boer, 
Pattern formation in Escheria coli: A model  
for the pole-to-pole oscillations of  Min 
proteins and the localization of the division 
site, Proc. Natl. Acad. Sci USA, 98:25(2001) 
14202-14207.  
[16] K. Kruse , A Dynamics Model for 
Determining the Middle of E. coli, Biophys. J. 
82(2002)618-627.   
[17] M. Howard and A.D. Rutenberg, Pattern 
formation inside bacteria: Fluctuation  due to 
the low copy number of proteins. Phys Rev 
Lett, 90(2003). 128102(1)- 128102(4).   
[18] K.C. Huang and N.S. Wingreen, Min-
protein oscillations in round bacteria, 
Phys.Biol. 1(2004) 229-235.   
[19]  S. Chen and D.G. Doolen, Lattice 
Boltzmann Method for Fluid Flows, Ann.  
Rev.Fluid Mech. 30(1998) 329-364. 
[20] N.S. Martys. and H.D.Chen., Simulation 
of multicomponent fluids in complex Three-
dimensional geometries by the Lattice 
Boltzmann method, Phys. Rev. E 53(1996) 
743-750. 
[21] S. Chen., H. Chen., D. Martinez and 
W.Matthaeus, Lattice Boltzmann Model for 
Simulation of Magnetohydrodynamics, Phys. 
Rev. Lett. 67(1991) 3776-3779. 
   

[22]  D.O.Martinez, Chen S. and Matthaeus 
W.H.,LatticeBoltzmannmagnetohydro-
dynamics, Phys. Plasmas 1(1994) 1850-
1867. 
[23] M. Hirabayashi.,Y. Chen. and H. 
Ohashi., New Lattice-Boltzmann Model for 
Magnetic Fluids, Phys. Rev. Lett. 87(2001) 
178301(1)-178301(4). 
[24]  P. Dellar., Lattice Kinetic Schemes for 
Magnetohydrodynamics, J. Comp. Phys. 
179(2002) 95-126. 
[25] G.D. Doolen, Lattice Gas Methods: 
Theory, Applications and Hardware 2nd   ed, 
MIT: Cambridge, MA, 1991.   
[26]  R.G.M.Vander Sman and M.H. Ernst., 
Advection-diffusion lattice Boltzmann scheme 
for irregular lattices, J. Comp. Phys. 60(2000) 
766-782. 
[27]  S.P. Dawson., S. Chen and G.D. 
Doolen, Lattice Boltzmann computations for 
reaction-diffusion equations, J. Chem. Phys. 
98(1993) 1514-1523. 
[28]  R. Blaak and P.M. Sloot  , Lattice 
dependence of reaction-diffusion in lattice 
Boltzmann modeling, Comp. Phys. Comm, 
129(2000) 256-266.   
[29] G.Yan  and L.Yuan , Lattice Boltzmann 
simulation for the spiral waves in the Exitable 
medium, Comm. In Nonlinear Sc. & Numer. 
Sim. 5(2000) 147-150. 
[30]  Q. Li , C. Zheng  and  N. Wang , Spiral 
waves in CIMA model and its LBGK 
Simulation, Comm. In Nonlinear Sc. & Numer. 
Sim. 6(2001) 68-73. 
 
 



The First TSME International Conference on Mechanical Engineering 
20-22 October, 2010, Ubon Ratchathani 

 

[31] C. Migliorini , Y.H. Qian., H. Chen., E. 
Brown , R. Jain. and L.Munn , Red Blood 
cells augment leukocyte rolling in a virtual 
blood vessel, Biophys. J.  84(2002) 1834-
1841.   
[32] C.H. Sun., C. Migliorini  and L. Munn , 
Red blood cells initiate leukocyte Rollin in 
postcapillary expansions: A Lattice 
Boltzmann analysis, Biophys. J.   85(2003)  
208-222.    
[33] M. Hirabayshi, M. Ohta., D.A. Rufenacht 
and B. Chopard, A Lattice Boltzman Study of 
blood flow in stinted aneurism, Futer Gen. 
Comp. Sys. 20(2004) 925- 934.    
[34]   Y. H. Qian., D.Dhumieres and P.A. 
Lallemann., Lattice BGK models for Navier-
Stokes equation, Europhys. Lett. 17(1992) 
479-484. 
[35] H. Chen, S. Chen and W. H. Matthaeus, 
Recovery of the Navier-Stokes Equations 
using a lattice-gas Boltzmann method, Phys. 
Rev. A. 45(1992)  R53339-R5342.   
[36]   R.Benzi , S. Succi  and M.Vergassola, 
The lattice Boltzmann equation: theory and 
applications, Phys. Rev. Rep. 222(1992) 145-
197. 
[37] R. Mei , L.S. Luo. and W. Shyy , An 
accurate curved boundary treatment in the 
Lattice Boltzmann method, J. Comp. Phys. 
155(1999) 307-330.    
[38]   J. G. Zhou, Lattice Boltzmann Methods 
for Shallow Water Flows; Germany, 2004. 
[39]   X. He. and L.S. Luo, A priori derivation 
of the lattice Boltzmann equation,  Phys. Rev. 
E.  55(1997)  R6333-R6336. 
 
 

[40]   X. He  and L.S. Luo., Theory of the 
lattice Boltzmann method: From the 
Boltzmann equation to the lattice Boltzmann 
equation, Phys. Rev. E. 56(1997) 6811-6817. 
[41]   S. Chen, D.O. Martinez and R. Mei., 
On boundary conditions in lattice Boltzmann 
methods, Phys Fluids. 8(1996) 2527-2536. 
[42]    Q. Zou  and X. He ., On pressure and 
velocity boundary conditions for the  Lattice 
Boltzmann BGK model, Phys Fluids. 9(1997) 
6202-6205. 
[43] X. Zhang , J. W. Crawford, A.G 
Bengough. and I. M. Young., On boundary  
conditions in the lattice Boltzmann model for 
advection and anisotropic dispersion 
equation, Adv. Water Resour. 25(2002) 601-
609. 
[44]  U. Junthorn , S. Unai , P. Kanthang ,W. 
Ngamsaad , C. Modchang , W. Triampo , C. 
Krittanai , D.Triampo and Y. Lenbury , 
Single-Particle Tracking method for 
Quantitative Tracking and Biophysical study 
of MinE protein, J.  Korean. Phys. Soc. 
52(2008) 639-648. 
[45] C.L.Woldringh, N.B. Grover, R.F. 
Rosenberger and A. Zaritsky, Dimensional  
rearrangement of rod-shaped bacteria 
following nutritional shift-up. II. experiments 
with Escherichia coli, J. Theor Biol. 86(1980) 
441-454. 
 
[46] D. Bramhill, C.M. Thompson, GTP-

dependent polymerization of 
Escherichia.    coli FtsZ protein to form 
tubules. Proc Natl Acad Sci U S A. 91 
(1994) 5813-5817.  

 



The First TSME International Conference on Mechanical Engineering 
20-22 October, 2010, Ubon Ratchathani 

 

[47] S. Unai, P. Kanthang, U. Junthon, W. 
Ngamsaad, W.Triampo, C. Modchang 
and  C. Kritanai, Quantitative analysis 
of time series fluorescence microscopy 
using single particle tracking method: 
application to MinD protein dynamics, 
submitted (2008) 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1. Schematic diagram of the MinDE 
dynamics. This model of the mechanisms of 
MinD and MinE interaction were proposed by 
Howard et al [14]. This figure shows the rate 
reaction of Min proteins in the cytoplasm and 
cytoplasmic membrane. 
 
 
 
 
 
 

 
 
 
Figure 2. Particle distribution function in the 
collision step at time t  and the streaming 
step at time 1t +  in D2Q9. 
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Figure 3. Sketch of bounce-back scheme. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 4.Schematic illustration of the mirror-
image method for the boundary treatment. 
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Figure 5. The oscillation of MinD protein 
performed in LBM and experiment. A. The 
LBM simulation results of MinD shown pole-
to-pole oscillation in term of time evolution of 
total concentration of MinD as function of 
position ( )yx,  (in μm).The color scale runs 
from the lowest(black) to the highest(white). 
B. The experimental results shown the 
oscillation of GFP:MinD concentration . The 
characteristic of dynamical pattern are 
similarly feature between A and B which 
MinD mostly concentrated at the polar zone 
(see experimental details in ref. 47). 
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Figure 6. The oscillation of MinE protein 
performed in LBM and experiment. A. The 
LBM simulation results of MinE shown pole-
to-pole oscillation in term of time evolution of 
total concentration of MinE as function of 
position ( )yx,  (in μm).The color scale runs 
from the lowest(black) to the highest(white). 
B. The experimental results shown the 
oscillation of GFP:MinE concentration . The 
characteristic of dynamical pattern are 
similarly feature between A and B which 
MinE seem to occupies near the midcell (see 
experimental details in ref. 44). 
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Figure 7.  The time average of MinD and 
MinE by LBM and experiment. (A) is the time 
average MinD (left) and MinE (right) densities 

max/),( nyxn  in LBM simulation,  relative 

to their respective time-average maxima, as 
a function of two-dimensional position 

( )yxx ,=  (in mμ ) along the bacterium. The 
bacterial shape is 21x  mμ . B. The time 
average of intensity for MinD (left) and MinE 
(right) in experiments( see ref. 44 and 47). 
The colors are scaled from 0 to1. The main 
characteristic of high and low normalization 
are similar between A and B. 
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Figure 8. The profiles of time averages MinD 
(a) and MinE (b) densities relative to their 
maxima, max( , ) /n x y n .The bacterial shape 
is 2 x 3 mμ . 
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Figure 9.  The profiles of time averages 
MinD (a) and MinE (b) densities relative to 
their maxima, max( , ) /n x y n .  The bacterial 
shape is 3 x 4 mμ . 
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Figure 10. The profiles of time averages 
MinD (a) and MinE (b) densities relative to 
their maxima, max( , ) /n x y n .  The bacterial 
shape is 2 x 2 mμ . 
 
 
 
 
 
 
 
 
 
 



The First TSME International Conference on Mechanical Engineering 
20-22 October, 2010, Ubon Ratchathani 

 

 
 

0.6

0.65

0.6
5

0.
7

0.7

0.7

0.75 0.
75

0.75

0.8

0.8

0.8

0.8

0.8

0.
8

0.
8

0.
8

0.8

0.8

0.8
5

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.
85

0.85

0.85

0.85

0.9

0.9

0.9

0.
9

0.9

0.9

0.9

0.
9

0.9

0.9

0.9

0.9

0.95

0.95

0.95

0.
95

0.95

0.95

0.
95

0.
95

0.95 0.95

0.95

0.95

cell length (μm)

ce
ll 
w
id

th
( μ

m
)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

 
 
 

(a) 
 

0.8

0.8

0.8

0.8

0.85

0.85

0.85

0.85

0.9

0.9

0.
9

0.9

0.
9

0.9

0.9

0.95

0.95

0.9
5

0.95

0.9
5

0.95

0.95
0.95

0.95

cell length (μm)

ce
ll 

w
id

th
( μ

m
)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

 
(b) 

 
 
Figure 11. Contour plots of MinD (a) and 
MinE (b) in  2*2 mμ  
 
 
 
 
 
 
 
 
 


