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Abstract 

The work in this paper is aimed at demonstrating multiobjective optimization of plate-fin heat 
sinks and the superiority of combining a response surface method and multiobjective evolutionary 
optimizer over solely using the evolutionary optimizer. The design problem is assigned to minimize a heat 
sink junction temperature and fan pumping power. Design variables determine heat sink geometry. 
Design constraints are given in such a way that the maximum and minimum fin heights are properly 
limited. The function evaluation is carried out by using the finite volume analysis software. Two 
multiobjective evolutionary optimization strategies, multiobjective particle swarm optimizers with and 
without the use of a response surface technique, are implemented to explore the Pareto optimal front. 
The optimum results obtained from both design approaches are compared and discussed. It is illustrated 
that the multiobjective evolutionary technique is a powerful tool for the multiobjective design of the 
electronic air-cooled heat sinks. With the same design conditions and number of function evaluation, the 
multiobjective particle swarm optimizer with the use of the response surface technique totally outperforms 
the other. 
Key words: Multiobjective particle swarm optimizer, Response surface method, Plate-fin heat sink, 
Geometrical design, Finite volume method. 
 

1. Introduction 
Due to the growth trend in integrated 

circuit (IC) technology recently, electronic cooling 
systems and components with higher 
performance are needed. Higher power density 
and heat dissipation as well as a decreased size 
of those components are expected. The future 
electronic products need to be long-lasting and 

capable of handling the more severe environment 
[1]. As a result, thermal management and design 
in packaging industry becomes increasingly 
important. An aluminum air-cooled heat sink is 
one of the most commonly used components for 
cooling electronic packages. Using such a cooling 
system is advantageous in that it has a simple 
maintenance process, more reliability, lower 
manufacturing cost and no environmental 
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concerns compared to other cooling methods. It 
has been studied by many researchers that the 
heat-sink with good geometrical design provides 
better cooling performance. This means that the 
optimization process could be an effective design 
tool for the heat sink. A lot of research work has 
been conducted in the field of heat sink 
design/optimization e.g. in [1-7]. It is obvious from 
the literature survey that most of the optimization 
studies are limited to single objective function 
whereas, in reality, there are multiple objectives 
to be decided. If the multiobjective design of heat 
sinks can be achieved, it could make a significant 
impact on the electronic packaging technology. 
The successful use of multiobjective evolutionary 
optimizers for practical problems has been 
reported for many years. Using such optimizers is 
advantageous as they are simple to implement, 
need no function derivatives, and can deal with 
almost all kinds of design functions and variables. 
Moreover, the multiobjective evolutionary 
optimization process can hardly stall. The most 
outstanding ability of the multiobjective 
evolutionary optimizers is that they can explore a 
Pareto optimum set within one simulation run. 
They however have some undesirable 
drawbacks, which are a lack of consistency and 
slow convergence rate. The optimizers are said 
to be unsuitable for a design problem with highly 
expensive function evaluation. As a result, the 
hybridisation of a response surface method and 
the multiobjective evolutionary optimizers is 
invented and this approach is found to be greatly 
powerful and effective [8]. In this study, the 
geometrical design of plate-fin heat sinks is 
carried out using the multiobjective particle 
swarm optimizer with and without the 

hybridisation of a response surface method.  The 
design problem is assigned to find heat sink 
geometries such that minimising a heat sink 
junction temperature and fan pumping power. 
Design constraints are given in such a way that 
the maximum and minimum fin heights are 
properly limited. The function evaluation is 
achieved by using the CFD software. Two 
multiobjective strategies are implemented to 
explore the Pareto optimal front. The optimum 
results obtained from both design approaches are 
compared. It is illustrated that, with the same 
design conditions and number of function 
evaluations, the evolutionary multiobjective 
optimizer with the use of the response surface 
technique is far superior. The applied 
multiobjective evolutionary technique is a powerful 
tool for the design of electronic air-cooled heat 
sinks. 

 
2. Multiobjective Particle Swarm Optimizer 

The multiobjective evolutionary optimizer 
used to find the Pareto optimum solutions in this 
research work is multiobjective particle swarm 
optimization (MPSO). The method of particle 
swarm optimization has been recently used as a 
population-based or evolutionary optimizer for 
both single- and multiple- objective design cases. 
The method is said to be simple but found to be 
effective compared to some other evolutionary 
algorithms. It can be thought of as mimicking the 
movement of a flock of birds which aim to find 
food [9]. For multiobjective optimization, the 
search procedure starts with an initial set of 
design solutions along with their corresponding 
initial particle velocities. Having evaluated the 
objective function values of the individuals in the 
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initial population, the non-dominated solutions of 
the initial population are taken to an initial 
external Pareto archive. The new set of solutions 
is found by using the following updating strategy: 
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Where xi(k) is the ith individual at the kth iteration 
vi(k) is the velocity vector of xi(k) at the kth 
iteration 
W is an initial weight used to control the impact 
of the previous velocities 

r1, r2 ∈ [0,1] are a uniform random number 
C1 is called a cognitive learning factor 
C2 is called a social learning factor 

best
ip is the personal best of the individual xi 
best
ig is the global best solution. 

In this paper, best
ig  are randomly selected 

from the external archive. The non-dominated 
solutions of the union set of the new population 
and the non-dominated solutions in the previous 
Pareto archive are sorted and saved to the new 
external Pareto archive. In cases where the 
number of non-dominated solutions exceeds the 
archive limit, the adaptive grid algorithm (see 
[10]) is operated to properly remove some non-
dominated solutions from the archive. Fig. 1 
demonstrates how the adaptive grid technique for 
the bi-objective case works. Having generated a 
grid covering all of the non-dominated solutions, 
one of the members in the most crowded region 
is removed from the archive. The crowded 
regions are updated and the member in the most 

crowded region is removed iteratively until the 
number of non-dominated solutions is equal to the 
size of the archive. The search procedure is 
repeated until fulfilling a termination criterion. 

 
Fig. 1. Adaptive grid algorithm 

3. Hybridization of MPSO with a Response 
Surface Method 

A response surface method is a proven 
numerical strategy for use in optimization process. 
The successful results in using RSM for both 
single and multiple objective optimizations have 
been reported worldwide [8]. The basic concept is 
to exploit numerical curve fitting or interpolation to 
approximate non-linear design objectives or 
constraints. The optimization is carried out using 
the approximate model rather than using the real 
function evaluation. This means that the problem 
of time-consuming function evaluation can be 
alleviated. However, it also has some 
disadvantages e.g. inaccurate function 
approximation may lead evolutionary search to the 
improper region of design space or even away 
from the real optima. Coupling RSM with MPSO 
search can be achieved by using MPSO as the 
main procedure. As a population is created, some 
design points in the population are taken to build 
an approximate design problem. Then, another 
MPSO sub-optimizer is used to explore the Pareto 
optimal set using the approximate function model. 
The Pareto optimal solutions obtained from the 
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use of the sub-optimizer and the RSM model are 
taken back to the main optimization procedure. 
The real function values of the selected non-
dominated solutions from optimizing the 
approximate model are evaluated. The non-
dominated solutions from the previous external 
archive, the current population and the design 
points taken from optimizing the RSM model are 
put together and sorted to have the new set of 
non-dominated solutions. The external Pareto 
archive is then updated by using the new set of 
non-dominated solutions. This process is 
repeated until the termination criterion in fulfilled. 
The numerical procedure of a coupled MPSO 
and RSM for an unconstrained case is illustrated 
in Fig. 2. In the optimization process using the 
RSM model, at the tth iteration, design solutions 
are represented by yi(t). Particles’ velocities are 
denoted by ui(t). An external Pareto archive is 
denoted by Bt whereas g(yi(t)) are function 
values computed using RSM. 
 

 
Fig. 2. Flowchart for coupled MPSO and RSM 

4. Multiobjective Design Problem 
The thermal performance and required 

pumping power of an air-cooled heat sink are 
dependent on a number of parameters including 
fin thickness, fin height, number of fins, fin to fin 
spacing, approach air velocity and base-plate 
dimension. Fig. 3 displays the shape of a typical 
plate-fin heat sink and some defined parameters. 
The variation of fin heights can also be assigned 
as design variables.In this work, the multiobjective 
design problem of the plate-fin heat sink is posed 
as follows 

{ })()()(min 21 XXXf
X

ff=  (3) 

Subjected to 

10 –Hmin/b ≤ 0 

Hmax/b – 25 ≤ 0  
where f1 is a junction temperature. 
f2 is a fan pumping power. 
Hmax is the maximum fin height. 
Hmin is the minimum fin height. 
The first objective function is a temperature value 
at the junction of the heat sink and a CPU chip, 
which can be written as 

HSajc QRTTf +==)(1 X  (4) 

where Tjc is a junction temperature  
Ta is an ambient air temperature (298 K) 
Q is heat flux (80 watts) 
RHS is heat sink thermal resistance.  
The minimisation of this objective value indicates 
the thermal performance of the heat sink. The 
second objective function affects the fin cost, 
which is rather inevitable in any engineering 
system design. The fan pumping power can be 
expressed as: 
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where PF is a fan pumping power 

fa WLVm =& is an air flow rate 

ΔP is a pressure drop across the heat sink 

ρa is air density 
Vf is an inlet air velocity. 

Fig. 4 illustrates some of the design 
parameters that determine the heat sink cross-
sectional area. The vector X of seven design 
variables can be detailed as 
X1 = d: fin thickness having the bound as 
[0.5,3.0] mm. 
X2 = n: fin number having the bound as [5,30] 
X3 = tb: plate base thickness having the bound as 
[1.0,5.0] mm  
X4 = H1: fin height in fig.4 having the bound as 
[25,140] mm  
X5 = H2: fin height in fig.4 having the bound as 
[25,140] mm  
X6 = H3: fin height in fig.4 having the bound as 
[25,140] mm  
X7 = Vf: inlet air velocity having the bound as 
[0.5,6] m/s 

The values of H1, H2 and H3 control the 
fin height variation. The parameters W and L are 
set to be 60 mm and 80 mm respectively. 

 

 
Fig. 3 Plate-fin heat sink 

 

 
Fig. 4 Design parameters 

The thermo-fluid analysis of the forced 
convection plate-fin heat sink is achieved by using 
the finite volume method. The finite volume model 
of the heat sink is (both fluid and solid domains) is 
given in Fig. 5, the assumptions for this analysis 
are as follows 

- Fluid flow being laminar and steady 
- Constant material thermo-physical of both 

air and solid 
- Uniform approach air velocity 
- Uniform heat flux entire base plate bottom 

surface. 
The heat sink body is made of Aluminum. The 

physical properties of the solid and fluid are given 
in table 1. 

Table 1. Aluminium and air properties 

Aluminum properties Air Properties 
Density = 2719 kg/m3 
Specific heat = 871 J/kg-K 
Thermal conductivity = 202 
W/m-K 

Density = 1.177 kg/m3 
Specific heat =1006  J/kg-K 
Thermal conductivity = 0.0267 
W/m-K 

Viscosity=1.8832×10-5 kg/m-s 

The multiobjective particle swarm 
optimizer without the use of RSM (termed MPSO 
without RSM) has the population sized 25 and 
uses 50 generations for exploring the Pareto front 
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of the problem (3). For the MPSO with RSM 
method, the population size is set to be 25. On 
each generation, 25 individuals obtained from 
using the MPSO sub-optimizer with RSM function 
approximation are taken to the main optimization 
procedure while other 25 individuals are created 
from the main searching process of the 
multiobjective particle swarm optimization. In 
order to have the same number of finite volume 
analyses, MPSO with RSM needs 25 
generations. The response surface method is 
based on the concept of multiquadric 
approximation [8]. The size of an external Pareto 
archive is set to be 80 for both optimization 
strategies. The methods start searching with the 
same initial solutions. The design constraints can 
be dealt with by using the non-dominated sorting 
concept presented in [11]. According to the 
population size and the number of generations, 
the total number of times that the finite volume 

analysis takes place is equal to 25×50 for both 
optimization methods. It is obvious that the 
MPSO with RSM needs more computational time 
for the RSM sub-optimization process but it is 
insignificant compared to the long period of time 
needed for the finite volume analysis. 

 

 
Fig.5 Finite volume model of the heat sink 

 

5. Design Results 
Fig. 6 shows the approximate Pareto 

fronts explored by the MPSO methods with and 
without RSM. It is clear that MPSO with RSM 
totally outperforms the other. Fig. 7 displays the 
comparison of the front obtained from the MPSO 
without RSM at the 50th iteration and the front 
obtained at the 10th iteration of the MPSO with 
RSM method. It can be seen that the later front is 
still far better. The more critical comparison is 
illustrated in Fig. 8, which is between the front of 

MPSO without RSM after 25×50 finite volume 
analyses and the front obtained from MPSO with 

RSM after 50×5 analyses. The latter is still far 
superior to the former.  

 
Fig.6 MPSO without RSM at 50th iteration VS 

MPSO with RSM at 25th iteration 

 
Fig.7 MPSO without RSM at 50th iteration VS 

MPSO with RSM at 10th iteration 
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Fig.8 MPSO without RSM at 50th iteration VS 

MPSO with RSM at 5th iteration 

The progress in exploring the Pareto 
front of the design problem (3) by the MPSO 
without RSM method is shown in Fig. 9. It is 
shown that the set of non-dominated solutions 
was slowly improved until the final Pareto archive 
is obtained. The search history of the MPSO with 
RSM method is shown in Fig. 10. The non-
dominated solutions approached the Pareto front 
rapidly and almost reached the Pareto front after 
the 5 generations. This shows the high 
convergence rate of the MPSO with RSM 
method. 

 

 
Fig. 9 Search history of MPSO without RSM 

 

 
Fig. 10 Search history of MPSO with RSM 

The heat sink cross-sectional areas 
corresponding to the 40 sample Pareto points are 
illustrated in Figs. 11 – 12. Most of the fins have 
pretty similar fin height variation but different inlet 
velocity, number of fin, fin thickness, fin base 
thickness and consequently fin-to-fin space.    

 

 
 

Fig. 11 Fin cross-sectional areas of  
the points 1-20 

 

 
 

Fig. 12 Fin cross-sectional areas of 
the points 21-40 
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6. Conclusions and Discussion 
The use of multiobjective particle swarm 

optimization with and without the combination of 
the response surface method for the 
multiobjective design of plate-fin heat sink 
geometry is demonstrated. From the obtained 
Pareto optimum results, the linked MPSO and 
RSM method is far superior to the MPSO method 
without RSM. The MPSO with RSM is a powerful 
design tool for multiobjective geometrical design 
of plate-fin heat sinks. With the use of such a 
method all aspects of design variables and 
functions can be dealt with and the optimization 
process can hardly stall.  
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