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Abstract 

In this paper, the use of multiobjective evolutionary optimisers for passive vibration suppression of 

an automotive component is demonstrated. The component is used to connect a car engine to some 

point of a car body between the front seats. Under such circumstance, the structure is subject to several 

mechanical phenomena e.g. stress failure, fatigue, vibration resonance, and vibration transmissibility. The 

optimisation problem is posed to find structural shape and size such that maximising structural natural 

frequency and simultaneously minimising structural mass while constraints include stress failure and 

displacement. The multiobjective optimiser employed is the multiobjective version of Population-Based 

Incremental Learning (PBIL) with and without using a surrogate model. The optimum results obtained are 

illustrated and discussed. It is found that the propose design scheme is effective and efficient for 

automotive component design.   

Key words: multiobjective evolutionary algorithm; shape optimisation; Pareto optimal front; automotive 

component; Vibration suppression 

 

1. Introduction 

 Due to highly increasing competitiveness 

in automotive industry, many car manufacturers 

require to develop new products to offer 

customers. Therefore, automotive components 

are always improved by manes of design 

optimisation [1-2].  

  Practical engineering design problems 

are usually assigned to find the best solutions of 

design variables that lead to optimised design 

objectives whilst fulfilling all predefined 

constraints. Often, the design problem has more 

than one objective which is called multiobjective 

optimisation. The most popular method that are 

used for multiobjective optimisation is 

Evolutionary Algorithms (EAs) [3-6]. The method 

can explore a Pareto front within single run and 

without requiring function derivative. However, a 

lack of search consistency and low convergence 

rate are drawbacks of multiobjective evolutionary 

algorithm (MOEAs) [5]. For this reason, the 

hybridisation of  a surrogate model method and 

multiobjective optimisers has been invented and 
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this approach is found to be very powerful and 

effective [6].         

 This paper presents multiobjective 

evolutionary optimisation of an automotive 

component. The component is used to connect a 

car engine to some point of the body between 

the front seats. The structure is subject to 

several mechanical phenomena such as stress 

failure, fatigue, vibration resonance, and 

vibration transmissibility. The optimisation 

problem is assigned to find structural shape and 

size such that maximising structural dynamic 

stiffness while, at the same run, minimising 

structural mass. Design constraints include 

stress failure and displacement. Three 

dimensional finite element analysis (FEA) is 

employed to find the objective and constrain 

functions. The optimum solutions called Pareto 

solutions are evaluated by using PBIL 

cooperating with a Gaussian process surrogate 

model and a Latin Hypercube Sampling 

technique. The proposed design approach is 

found to be numerically powerful and effective.   

     

2. Surrogate model method 

 The term surrogate model used in an 

optimisation process is an approximate model 

which is used to approximate the objective and 

constrain function in optimisation problems [7]. 

Such a design strategy is useful when dealing 

with optimisation problems with expensive 

function evaluation, problems that have limited 

function values available, and problems that 

need to perform experiment to evaluate their 

function values. The hybrid of the surrogate 

model with an optimiser can be achieved in 

several ways. One of the commonly used 

strategies is that, during the main optimisation 

process, some design solutions have been 

evaluated. Those solutions and their 

corresponding objective and constraint values 

are used to build a surrogate model. This model 

is then used as approximate function evaluation. 

The optimisation with the surrogate model is 

performed with significantly less running time 

compared to using the actual function 

evaluation. The obtained optimum solution of 

this design phase is brought to the main 

optimisation process where its actual function 

value is determined. With a highly accurate 

surrogate model, this design strategy is far 

superior to purely using an evolutionary 

algorithm. The computational steps are repeated 

until termination conditions are fulfilled.  The 

commonly used surrogate models for 

optimisation are Kriging model [8], radial basis 

interpolation [6], polynomial interpolation [9] and 

neural network [10]. In this paper, only the 

Kriging model is employed. 

 

2.1. Kriging Model  

A Kriging model (also known as a 

Gaussian process model) used herein is the 

famous MATLAB toolbox named design and 

analysis of computer experiments (DACE) [8]. 

The estimation of function can be thought of as 

the combination of global and local 

approximation models i.e.    

)Z()(f)y( xxx +=          (1) 

where
 

)(f x  is a global regression model while 

)Z(x is a stochastic Gaussian process with zero 

mean and non-zero covariance representing a 

localised deviation. In this work, a linear function 
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is use for a global model, which can be 

expressed as:   

 
fβ T=∑+=

=

n

1i
ii0 xββf                    (2) 

 

where β = [β0, …, βn]
T, f = f(x) = [1, x1, x2, …, 

xn]
T. The covariance of Z(x) is expressed as:  

 
)](R[))(Z),(Z(Cov qpqp x,xRxx 2σ=       (3) 

for p, q = 1, …, N where R is the correlation 

function between any two of the N design points, 

and R is the symmetric correlation matrix size 

N×N with the unity diagonal [8]. The correlation 

function used in this paper is  

 ))()(exp()(R T qpqpqp xxθxxx,x −−−=
  
(4) 

where θi are the unknown correlation 

parameters to be determined by means of the 

maximum likelihood method. Having found ββββ and 

θθθθ, the Kriging predictor can be achieved as  

) Fβ(y(x)Rrβf(x)y 1TT −+= −         (5) 

where F = [ f(x1), f(x2), …, f(xn)] T and   

)]),...,R(),R([R()( N21T xx,xx,xx,xr = . 

For more details, see [8]. 

 

3. Multiobjective Population-Based 

Incremental Learning (MOPBIL) 

 PBIL algorithm is an evolutionary 

optimiser based upon binary searching space. 

The PBIL approach evolves its population by 

considering the probability of each bit in the 

binary strings of being either F0 G or  F1G. The 

binary population is represented by the so-called 

probability vector. The example of how the 

probability vector works is shown in Fig.1 

 In multiobjective optimisation, more 

probability vectors should be used in order to 

obtain a more diverse population; therefore, it is 

called a probability matrix. Starting with an initial 

probability matrix that have all elements as H0.5I, 

and an (empty) Pareto archive, the binary 

population according to the initial probability 

matrix is then created. The binary population is 

decoded and objective values are evaluated. The 

best binary solution, whether it is based on 

minimisation or maximisation, is chosen to 

update the next probability vector new
j,i

P using the 

relation 

 
RjR

old
j,i

new
j,i

L)L(1 bPP +−=         (6) 

where 
R

L  is called the learning rate, a value 

between 0 and 1, to be defined and 
j

b  is the 

mean value of the thj  column of the best binary 

solution. 
R

L  is set as: 

 0.1)0.1orrand(0.5L
R

−++=          (7) 

where ∈rand [0,1] is a uniform random number. 

Mutation on the thi  row of the probability matrix 

is allowed to take place by a predefined 

probability and it can be expressed as: 

 
ss

old
j,i

new
j,i

mrand(0or1))m(1 +−= PP     (8) 

where 
s

m  is the amount of ship used in the 

mutation. 

 
Fig.1 Probability vector and their corresponding 

populations 

 

The updating process is completed when 

all rows of the probability matrix are changed. 

The probability matrix is updated and the 

external Pareto archive is improved iteratively 

until convergence is achieved.  

population 1      population 2       population 3  

   0 0 1 1            0 1 1 0     0 1 0 1 

   1 1 0 0            1 1 0 0     1 0 0 1 

   0 0 1 1            1 0 1 0     0 0 0 1     

   1 1 0 0            0 0 0 1      0 1 0 0 

Probability Vectors 

[0.5,0.5,0.5,0.5]   [0.5,0.5,0.5]  [0.25,0.5,0,0.75] 



The First TSME International Conference on Mechanical Engineering 

20-22 October, 2010, Ubon Ratchathani 

 

 In cases where the total number of the non-

dominated solutions is greater than the archive 

size, the archiving operator called the normal 

line method [4] is activated to remove some 

solutions from the archive. The archiving 

technique is used to prevent excessive use of 

computer memory during an optimisation 

process. The basic idea of the normal line 

technique is used to remove some non-

dominated design solutions while maintaining 

population diversity in the archive. For more 

details of multiobjective PBIL, see [11]. 

 

4. Design Problem 

 This paper presents a multiobjective 

optimisation design problem for an automotive 

part as show in Fig. 2. The component is used 

to connect the car engine with the car body. 

Under working conditions, this structure is 

subject to several mechanical phenomena e.g. 

stress failure, fatigues, vibration resonance, and 

dynamic force transmissibility. Also, structural 

displacement due to a number of loading 

conditions should not exceed the predefined 

limit. 

 
Fig. 2 Automotive part 

Fig. 3 a. Sizing variables 

 

 
Fig. 3 b. Shape variables 

  

  The multiobjective optimisation problem 

is posed to find structural shape and size such 

that maximising structural natural frequencies 

and minimising mass whereas constraint include 

stress failure and displacement, which can be 

express as 

Min:  (x)]f(x),[f
21

=f                               (9) 

Subject to 

allowablemax
σσ ≤  
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where x  is a design variable vector (all 

variables are displayed in Fig. 3). 
1

f  is a 

function of mass. 2f is a function of dynamic 

stiffness (or natural frequencies). x , 1f  and 
2

f  

can be express as : 

 T
21543214321
],x,x,z,z,z,z,z,t,t,t[t=x  

and 

 massf =1         (10) 

and 

 
54321 ωωωωω ++++

=
1

2
f .           (11) 

The other parameters are defined as follow: 

max
σ = Maximum von Misses stress 

allowable
σ = Allowable stress 

 ti =Shape thickness 

 zi=Position of key point in z axis 

 xi= Position of key point in x axis 

ωi = mode i natural frequency of a structure 

 Fig. 3 a. & b. display all of the sizing 

and shape design variables. The thicknesses (ti 

in Fig. 3 a.) are the thickness of the sub-regions 

of the automotive component as shown. The zi 

parameters determine the key points in vertical 

direction as located in Fig. 3 b. These key points 

are use to generated a spline curve so as to 

define the shape of the part. The xi parameters 

define the horizontal position of the key points 

on the component. 

The structure is acted upon by three 

load cases (bending, twisting and swaying loads) 

at its right-handed tip. The objective and 

constraint function values are evaluated by using 

FEA. The evaluation process is carried out in 

such a way that, with the given input design 

variables as defined the shape and dimensions 

of the structure is created. The finite element 

analysis is then performed. Finally the 

computational results can be obtained. Function 

evaluation is somewhat time-consuming, which 

means it is difficult to apply a common 

evolutionary algorithm to solve the optimisation 

problem (9). As a result, the surrogate-assisted 

evolutionary algorithm is developed to deal with 

such difficulty.  

To conduct the multiobjective 

optimisation as defined in (9). The MOPBIL 

algorithm and the surrogate-assist MOPBIL 

(MOPBIL-SM) are used to find Pareto optimal 

solutions. MOPBIL-SM is a design strategy that 

exploit the surrogate model to crate initial Pareto 

archive rather than starting with an empty 

archive as traditional multiobjective PBIL. 

The computational steps for generating 

an initial Pareto archive are as follows: 

I. Sample the design variable from design 

experiment by using the LHS technique. 

II. Evaluate design functions by FEA 

III. Constructing a surrogate model by using 

the Kriging technique. 

IV. Use MOPBIL find Pareto optimal set 

using the approximate function.  

V. Find the real function values of the 

Pareto optimal front obtained from 
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optimising the approximate Kriging 

model. 

VI. Use a non-dominated sorting technique 

to find the initial Pareto archive 

The LHS is used to sample 100 design 

solutions for constructing a surrogate 

optimisation model. Subsequently, with this initial 

Pareto archive, the common MOPBIL is 

operated where the population size is 30, the 

number of iteration is 10, and archive size is 30. 

 
5. Result and Discussion 

 The progress of Pareto optimal solutions 

of the optimisation design problem by using the 

hybridisation of a surrogate model method and 

the MOPBIL is displayed in Fig. 4.  

 
Fig.4 Pareto front of the MOPBIL-SM 

 In order to verify the effectiveness of the 

hybrid approach, the original MOPBIL (starting 

with empty Pareto archive) is performed with the 

same population and archive sizes while the 

total generation number is set to be 30. This 

implies that original MOPBIL uses 30×30 actual 

function evaluations which is approximately twice 

the number of evaluation used by MOPBIL-SM 

(100 + 10×30 evaluations). The results from the 

former are termed as MOPBIL whereas the 

results obtained from the later are named 

MOPBIL-SM. Fig.5-7 compare the Pareto fronts 

obtained from using MOPBIL-SM at the 

generations of 1, 3 and 5, and using MOPBIL at 

the generations of 10, 20 and 30 respectively. It 

can be found that the results from using 

MOPBIL-SM are better than the results from the 

original MOPBIL even with far smaller number of 

finite element analyses. That means the hybrid 

approach is far superior to the original optimiser. 

 

Fig.5 Comparative Pareto fronts: MOPBIL 10 

Generations versus MOPBIL-SM 1 Generations 

 Fig.6 Comparative Pareto fronts: MOPBIL 20 

Generations versus MOPBIL-SM 3 Generations   
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Fig.7 Comparative Pareto fronts: MOPBIL 30 

Generations versus MOPBIL-SM 5 Generations   

   

 The Pareto optimal solutions of the 

MOPBIL-SM shown in Fig. 8 have the 

corresponding design solutions as shown in Fig. 

9. The optimum components have obvious 

variation for the design variables t2 , z3 and z5, 

while the other variables have slightly variation. 

It can be seen that, with one optimisation run, 

we can have a number of optimum components 

for decision making.    

 

Fig.8 Pareto front from MOPBIL-SM 

 

 

 

 

 

 

 
Fig.9 3D automotive parts corresponding to 

selected solutions in Fig. 8 

 

6. Conclusions  

 The multiobjective 3D shape and sizing 

optimisation problem of an automotive 

component using the hybridisation of a surrogate 

model and MOPBIL is demonstrated. The results 

show that the proposed approach is efficient and 

effective for solving the design problem. The 

new design strategy outperforms the original 

PBIL optimiser based upon the total number of 

function evaluation. An improved design strategy 

employing much less function evaluations is the 

target for future work.   
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