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Abstract 

This paper proposes an application of ant colony optimization (ACO) to solve transmission 
system expansion planning (TSEP) problem based on DC power flow model. The main objective is to 
minimize the investment cost of transmission lines that should be added to an existing network in order to 
supply the forecasted load as economically as possible subject to many system constraints i.e. the power 
balance, the generation requirements, line connections and thermal limits. The TSEP problem was tested 
using the 18-bus of China Southwest system. The results obtained by ACO are compared to Genetic 
Algorithm (GA) in term of solution quality and computational efficiency. The experimental results show 
that the ACO method outperforms GA methods in terms of high quality solution, stable convergence 
characteristic and good computation efficiency. 
Keywords: Ant Colony Optimization, Genetic Algorithm and Transmission System Expansion Planning 
Problem 
 

1. Introduction 
 Transmission system expansion 
planning (TSEP) is an important issue of 
electrical power system planning. The principle 
of TSEP is to establish an optimal configuration 
to be consistent with electricity demand and a 
generation planning scheme, meeting the 
requirement of delivering electricity sufficiently, 
safely and economically over the planning 
period. For that reason, TSEP addresses an 
optimization problem in the power system. The 
model of TSEP can be categorized as static and 
dynamic according to the treatment of the study 
period. Static planning involves a single 

horizontal planning and answering the questions 
of what and where type of new equipment 
should be installed in an optimal way that 
minimizes the installation and operational costs. 
Others, dynamic planning is a derived 
generalization that considers the separation of 
planning horizon into several stages and 
answering the questions of what, where, and 
when to install the network additions [1]. 
However, this paper focuses only on the static 
planning. In the past decade many researchers 
proposed various techniques to solve both static 
and dynamic planning problems. The literatures 
of mathematical model applied to TSEP were 
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classified exclusively by Latorre et al. [2]. Garver 
[3] and Villasana et al. [4] proposed linear 
programming algorithms to solve the static 
TSEP. In dynamic view, Escobar et al. [5] 
proposed an efficient genetic algorithm (GA) to 
solve the problem of multistage and coordinated 
TSEP. Many artificial intelligence (AI) methods 
have been applied for solving TSEP problems. 
These methods include Simulated Annealing 
(SA) [6], Genetic Algorithm GA [5] and Tabu 
Search (TS) [7]. Recently, a method so called 
Ant Colony Optimization (ACO) has become a 
candidate for many potential applications. The 
ACO algorithm is inspired by the behaviors of 
real ant colonies and was first introduced by 
Marco Dorigo to solve the Traveling Salesman 
Problem (TSP) [8]. and later was applied to the 
asymmetric TSP [9], the Quadratic Assignment 
Problem (QAP) [10] and the Vehicle Routing 
Problem (VRP) [11]. Recently, ACO has been 
adapted to some network problems e.g. power 
distribution and communication network design 
[14]. This paper, therefore, proposes the 
application of ACO to solve the static TSEP 
based on DC power flow model. The results 
obtained by ACO are compared with 
conventional Genetic Algorithm (GA) method in 
term of solution quality and computational 
efficiency. 

The remaining part of this paper is 
organized as follows. Section 2 gives the 
problem formulation of TSEP problem based on 
DC load flow model. Section 3 presents the 
principle of ACO algorithm. Section 4 presents 
the detailed procedures of the ACO approach for 
solving the TSEP problem. Section 5 shows a 
case study and gives the comparative results 

with the traditional methods. Conclusion is finally 
given in Section 6. 

2. Problem Formulation 
2.1 Objective Function 

The objective function of TSEP is to 
minimize the investment cost of new 
transmission lines associated with physical and 
economic constraints. In this paper, the classical 
DC power flow model is used for static TSEP, 
which can be formulated as follow [13]. 
 

,

Minimize  T ij ij
i j

C c n
∈Ω

=∑   (1) 

 

where TC  is the total investment cost of 
new transmission lines, ijc  is the cost of a 

circuit which is a candidate for addition to the 
rights-of-way i j− , ijn  is the number of circuit 

added to the rights-of-way i j−  and Ω  is the 
set of all rights-of-way. 
 
2.2 Constraints 
2.2.1 Equality constraint. 

The set of equations determined by 
Kirchoff’s laws (KCL, KVL) and the power flows 
in the system are expressed as: 
 

(a) Power Balance 
 This constraint represents the 
conservation of power in each node. 
 

0+ − =G DSP P P   (2) 
 

Based on the above assumptions, DC 
load flow can be obtained as following equation. 
 

1
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where S  is the branch-node incidence 
matrix, iP  is the real power flow injection at bus 
i , GP  is generation injection vector of nodes, 

DP  is the load demand vector of nodes, ijB  is 

the lines susceptance matrix between bus i j− , 

iθ , jθ  is the phase angle of bus i  and bus j , 

N  is the total number of bus in system. 
 
(b) Kirchoff’s voltage law (KVL) 
 This constraint is the conservation of 
energy in the equivalent DC network and the 
constraint is nonlinear. 
 

0( )( ) 0ij ij ij ij i jP B n n θ θ− + − =        (4) 
 

where ijP  is the power flow in branch 

ji − , 0
ijn  is the number of circuits in the original 

base system, ijn  is the new number of circuits 

added to the rights-of-way ji − . 
 
2.2.2 Inequality constraint. 

The inequality constraints reflect the 
limits on physical devices in the power system 
as well as the limits created to ensure system 
security. 
 

(a) Transmission capacity limit. 
These constraints can represent the 

maximum power of transmission line which is 
capable of carrying based on thermal and 
dynamic stability considerations. 

 

max0 )( ijijijij PnnP ⋅+≤   (5) 
 

where max
ijP  is the maximum power flow 

in the branch ji − . 
 
(b) Power generating limit. 

These constraints give the maximum 
and minimum generating capacities, outside of 
which it is not feasible to generate due to 
technical or economic reasons. 

 

min max≤ ≤G G GP P P   (6) 
 

where min
GP  and max

GP  are the minimum 
and maximum generation injection vector of 
nodes. 
 
(c) Rights of way limit. 

For transmission planning, planners 
need to know the exact location and capacity of 
the new required lines. Therefore this constraint 
has to be included to consider in the planning. 
Mathematically, this constraint defines the line 
location and the maximum number of lines that 
can be installed in a specified location. It is 
represented as follow: 
 

max0 ij ijn n≤ ≤    (7) 
 

where max
ijn  is the maximum new 

number of circuits added to the rights-of-way 
ji − . 

 
3. Ant Colony Optimization 

Inspired by the collective behavior of a 
real ant colony, Marco Dorigo first introduced the 
ant system (AS) in his Ph.D. thesis in 1992, and 
further published in [8, 9]. The characteristics of 
an artificial ant colony include positive feedback, 
distributed computation, and the use of a 
constructive greedy heuristic. Positive feedback 
accounts for rapid discovery of good solutions, 
distributed computation avoids premature 
convergence, and the greedy heuristic helps to 
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find acceptable solutions in the early stages of 
the search process. In order to demonstrate the 
AS approach, the authors apply this approach to 
the classical TSP, asymmetric TSP, Quadratic 
Assignment Problem (QAP), and Job-Shop 
Scheduling problem (JSSP). The AS shows very 
good results in each applied area. More recently, 
Dorigo and Gambardella [9] have been working 
on extended versions of the AS paradigm. ACO 
is one of the extensions and has been applied to 
the symmetric and asymmetric TSP with 
excellent results in literature. The Ant System 
approach has also been applied successfully to 
other combinatorial optimization problems such 
as the vehicle routing problem. 

ACO is an algorithm which was inspired 
by the behavior of real ants. Ethnologists have 
studied how blind animals such as ants capable 
of finding the shortest path from food sources to 
the nest without using visual cues. They are also 
capable of adapting themselves in the changing 
environment. For example, finding a new 
shortest path once the old one is no longer 
feasible due to a new obstacle. The studies by 
ethnologists reveal that such capabilities are 
essentially due to communicating information 
among individuals regarding path to decide the 
direction. Ants deposit a certain amount of 
pheromone while walking, and each ant 
probabilistically prefers to follow a direction rich 
in pheromone rather than a poorer one. 
 

 

Fig. 1 Behavior of real ants colony 
 

Fig.1 illustrated the searching behavior 
of Ant family. In Fig.1(a) ants are on a straight 
line that connects a food source to their nest. An 
ant will deposit pheromone while walking and it 
probabilistically prefers to follow a direction rich 
in pheromone. This behavior can be explained 
how ants can find the shortest path that 
reconnects a line broken by an obstacle. In Fig. 
1 (b). ants are obstructed and they can not 
continue to go. Therefore, they have to choose 
between turning right or left. Half of the ants 
choose to turn right and the other half choose to 
turn left. A similar situation arises on the other 
side of the obstacle shown in Fig. 1 (c). Ants 
choosing the shorter path will more rapidly 
reconstitute the interrupted pheromone trail 
compared with those choosing the longer route. 
Thus, the shorter path will receive a greater 
amount of pheromone per time unit and, in turn, 
lager number of ants will choose the shorter 
one. Due to this positive feedback, all the ants 
will rapidly choose the shorter path shown in Fig. 
1 (d). All ants move at approximately the same 
speed and deposit a pheromone trail at 
approximately the same rate. The time 
consumed on the longer side of an obstacle is 
greater than the shorter one. It thus makes the 
pheromone trail accumulate more quickly on the 
shorter side. Ants prefer higher pheromone trail 
levels causing the accumulation to build up 
faster on the shorter route. 
 

4. Implementation for ACO for TSEP 
This section elaborates an application of 

ACO algorithm to solve TSEP. First, the model 
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has to be formulated as the routes between nest 
and food source for ACO. For example, a power 
system consists of 3 buses and 3 branches. 
Each branch can choose a number of possible 
line and the possible rights-of-way as shown in 
Fig. 2. This network can be graphically 
translated as the radial routes between nest and 
food source for ACO as shown in Fig. 3. This 
model reveals that the transmission system 
topology can be constructed by randomly 
selecting the number of circuit(s) of each branch, 
which is similar to the ant’s route between the 
nest and food source. 
 

12l

13l23l

 
Fig. 2 Example of power system 3 buses 3 

branches. 
 

12l 13l 23l  
 

Fig. 3 Simulate model as the routes of ants 
between nest and food source. 

 
In general, the procedure of ACO 

algorithm can be described as follows: m  ants 
are initially positioned at the nest. Each ant will 
choose a possible route as a solution. In fact, 
each ant builds a feasible solution (called a tour) 
by repeatedly applying a stochastic greedy 
search, called, the state transition rule. Once all 

ants have terminated their tours, the following 
steps are performed: The amount of pheromone 
is modified by applying the global updating rule 
[8], [9]. Ants are guided, in building their tours, 
by both heuristic and pheromone information. 
Naturally, a link with a high amount of 
pheromone is a desirable choice. The 
pheromone updating rules are designed so that 
they tend to give more pheromone to edges, 
which should be visited by ants. A flowchart of 
the proposed TSEP-ACO and its algorithm is 
shown in Fig. 4. The detail of ACO algorithm 
can be described in the following steps. 
 

 
 

Fig. 4 Flow chart of TSEP-ACO algorithm. 
 

 
Step 1. Initialization 

Set NC = 0 /* NC: Cycle Counter */ 
For every combination ( ji, ) 
Set an initial value 0)0( ττ =ij  and 

0=Δ ijτ  
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End 
Step 2. Construct feasible solutions 

For k=1 to m     /* m: number of ants */ 
       For i=1 to n    /* n: number circuit of 
branch*/ 
Choose a level of connection with transition 

probability give by Eq. (8). 
       End 
Calculate Objective Function Eq. (1) and 

Check Constraints Eq. (2-7) 
End 
Display the best solution of each ant  
Chosen the best of ant colony 
Update the best solution. 

Step  3 Global updating rule 
For every combination ( ji, ) 
       For k=1 to m 

 Find k
ijτΔ  according to Eq. (12) 

        End 
Update ijτΔ  according to Eq. (11). 

End 
Update the trail values according to Eq. 
(10). 
Update the transition probability according 
to Eq. (8). 

Step 4. Next search 
Set NC = NC+1 
For every combination ( ji, ) 

0=Δ ijτ  

End 
Choose a level of connection with transition 

probability give by Eq. (8). 
Calculate Objective Function Eq. (1) and 

Check Constraints Eq. (2-7) 
Step 5. Termination 

If (NC < NCmax) 
       Then 
Go to step 2,     Else 
Print the best feasible solution 

Stop 
       End 
End 

4.1 State transition rule 
The state transition probability rule of 

the ant colony is given in Eq. (8). This equation 
represents the probability that each ant ( k ) 
selects a number circuit in branch i j− . 

 

[ ] [ ]
1

( ) ( )
( )

( ) ( )

ij ijk
ij m

im im
i

t t
p t

t t

α β

α β

τ η

τ η
=

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=

∑
  (8) 

 

where ijτ  is the pheromone intensity 

and ijη  is the heuristic information between 

node i  and node j , respectively. In addition,α  
is the relative importance of the trail and β  is 
the relative importance of the heuristic 
information. The problem specific heuristic 
information in this paper is: 

ij
ij c

1
=η    (9) 

where ijc represents the associated cost 

of constructions transmission lines. Therefore, 
the number circuit with lesser cost has greater 
probability to be chosen. 
 

4.2 Global updating rule 
During the solution construction, it is no 

guarantee that an ant will construct a feasible 
solution, which obeys the reliability constraint. 
The pheromone updating treats the unfeasible 
solution. The amount of pheromone, deposited 
by ants, is set to a high value if the generated 
solution is feasible. On other hand, this value is 
set to a low value if it is infeasible. Therefore, 
this value depends on the solution quality. 
Infeasibility can be handled by assigning the 
penalty which proportion to the amount of 
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reliability violations. In case of feasible solution, 
an additional penalty is introduced to improve its 
quality. Following the above remarks, the trail 
intensity is updated as follows: 

 

( ) (1 ) ( ( 1))ij ij ijt tτ ρ τ τ= − ⋅ − + Δ  (10) 
 

ρ  is a coefficient such that )1( ρ−  
represents the evaporation of trail and ijτΔ  is: 

 

∑
=
Δ=Δ

m

k

k
ijij

1
ττ    (11) 

 

where m  is the number of ants and 
k
ijτΔ  is given by: 

 

th1 if k ant chooses path
0 otherwise

k
ijτ

⎧
Δ =⎨

⎩
 (12) 

 
5. Numerical Results 

The proposed TSEP-ACO method was 
tested on the 18 bus of China Southwest system 
[15]. The 18-bus of China Southwest system has 
18 buses and 27 candidate branches. The total 
demand is 2,066 MW and maximum possible 
number of added lines (rights-of-way limit) per 
branch equals four. The optimal planning 

solution for the 18 bus of China Southwest 
system is n1-11 = 1, n4-16 = 1, n5-12 = 1,  n6-14 = 2, 
n7-8 = 1, n7-13 = 1, n8-9 = 1 n9-10 = 2, n14-15 = 1, 
n16-17 = 2, n17-18 = 1. The simulation was made in 
comparison to GA approach. All methods are 
performed 30 trials, under the same evaluation 
function and individual definition, in order to 
compare their solution quality, convergence 
characteristic, and computation efficiency. The 
programs were implemented by MatLab® 
languages on Intel® Core2 Duo 1.66 GHz Laptop 
with 2 GB RAM under Windows XP. The statistic 
results which are performed by 30 trials, such as 
the investment cost, standard deviation, 
computational time and percentage of 
approaching near optimal solution, are shown in 
Table 1. 

Fig.5. shows the comparative 
convergence characteristic of the ACO and GA 
Fig.6 shows the distribution outlines of the best 
solution of each trial. Almost all investment costs 
obtained by the ACO method are lower. This 
verifies that the ACO method has better quality 
of solution. 

 
Table 1: Results of 18 bus of China Southwest system 

 

Results of static TEP 
Method 

ACO GA 

Best cost (×103 US$) 40,375 40,375 
Average cost (×103 US$) 40,475 41,037.5 
Worst cost (×103 US$) 41,375 45,175 
Standard deviation  305.13 1,245.52 
Average CPU Time (sec.) 73.1 120.86 

Line addition for the best result 
n1-11 = 1, n4-16 = 1, n5-12 = 1,  n6-14 = 2 

n7-8 = 1, n7-13 = 1, n8-9 = 1 n9-10 = 2 
n14-15 = 1, n16-17 = 2, n17-18 = 1 



The First TSME International Conference on Mechanical Engineering 
20-22 October, 2010, Ubon Ratchathani 

 

5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

6

7

8

9

10
x 104

Number of Iteraion

In
ve

st
m

en
t C

os
t (

m
ill

io
n 

U
S

$)

 

 
ACO
GA

Optimum Cost

 
Fig.5. Convergence characteristic of three methods. 
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Fig.6. Distribution of investment cost of three methods. 

 
6. Conclusion 

This paper proposes a novel approach 
adopting ACO search algorithm to solve TSEP 
problem that works corporately with the DC 
power flow model. The proposed method is test 
with 18 bus of China Southwest system which 
demonstrates good performance in comparison 
to the GA method in terms of less calculation 
time, quality of solution and stable-convergence 
characteristic. 
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