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Abstract 
 In this research work, an industrial-process prototype, particularly pick-and-place of machined 
parts, is developed by using an OWI-535 5-axis robot manipulator arm and controlling with Faulhaber 
motion control systems. To make an end-effector of the OWI-535 robot arm following desired positions 
with specified joint velocities, the inverse kinematics technique, known as the resolved motion rate 
controller, can help generating motion trajectories automatically. This inverse kinematics technique can be 
implemented with the Jacobian pseudo-inverse or Jacobian singularity-robust inverse. This technique 
does not require to inversely solve algebraic or geometric kinematic equations. Computation of the robot 
inverse kinematics is simulated in Matlab and then a motion control of the OWI-535 robot arm is 
performed by the “Faulhaber Motion Manager”. The pick-and-place motion of the OWI-535 robot arm 
agrees with its kinematics simulation very well.  
Keywords: inverse kinematics, robot manipulator arm, Jacobian pseudo inverse, Jacobian singularity-
robust inverse  
 

1. Introduction 
Nowadays, robot manipulator arms with 

a computer control are extensively used in most 
industrial factories to increase efficiency and to 
deal with repeated and/or hazardous tasks, such 
as in semiconductor wafer production processes 
[3]. Performing repetitive tasks continuously and 
repeatedly in the production line, human fatigue 
can lead to accident/injury or might result in a 
long-term health problem. On the other hand, 
robot manipulator arm can repetitively carry 

huge and heavy machine parts from one 
production line to anothers.  

Redundancy of the robot manipulator 
can provide many advantages in the case when 
the degree of freedom of a given task is less 
than that of the manipulator. When a joint failure 
occurs, the robot manipulator is still able to 
perform its task reliably [7]. Moreover, singular 
configuration of the robot manipulator can be 
avoided by control of redundancy using the 
Jacobian singularity-robust inverse [4].   
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In this work, we apply the redundancy 
control to inverse kinematics problem of the 
OWI-535 5-axis robot arm so that it can perform 
a pick-and-place operation. In Section 2, the 
structure and forward kinematics formulation of 
this robot arm are introduced along with its 
hardware description. The resolved motion rate 
control, which is a technique to solve the inverse 
kinematics problem by incorporating either 
Jacobian pseudo-inverse or Jacobian singularity-
robust inverse, describes in Section 3. Then, 
comparisons of kinematics simulations and 
experimental results of the pick-and-place 
operation of the OWI-535 robot arm is shown in 
Section 4. 

 
2. Structure and Forward Kinematics of OWI-

535 Robot Arm 
The structure of the OWI–535 robot arm consists 
of 4 revolute joints connecting by three linkages 
and an end-effector, which is composed of two 
4-bar linkage mechanisms. The length between 
each joint is as show in Fig. 1. Fig. 2 shows a 
limitation of angular rotation of 4 revolute joints, 
which can specify a reachable workspace of the 
OWI–535 robot arm. 
 

 
Fig. 1 Side view of the OWI–535 robot arm 
structure. 

 
                    (a)        (b)   

 
                   (c)                     (d) 

Fig 2 Limitation of angular rotation of revolute 
joint 1(a), joint 2 (b), joint 3 (c), joint 4 (d) [5].  

 
The joints’ rotation angle of each joint 

and frame assignment of the OWI–535 robot 
arm, used in forward and inverse kinematic 
calculations are illustrated in Fig. 3. Advantage 
of this frame assignment is that the z axes of 
frame 2 to 4 are parallel; as a result, a Jacobian 
calculation is straightforward. 

 

 
Fig. 3 A frame assignment for the OWI–535 
robot arm.  
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2.1 Forward kinematics calculation of OWI-535 
robot arm 
 The Denavit-Hartenberg parameters [1] 
for each joint and link are shown in Table 1, 
where L1, L2, L3 and H1 values are given in Fig. 
1. 
 
Table. 1 Denavit-Hartenberg parameters of the 
OWI-535 robot arm 

i αi-1 ai-1 di θi 

1 0 0 H1 θ1 

2 90° 0 0 θ2 

3 0 L1 0 θ3 

4 0 L2 0 θ4 

5 0 L3 0 0 

 
The forward kinematics from frame 0 to 

frame 4 can be computed by a transformation 
matrix 3423120104 TTTTT = . These transformation 
matrices ),,,( 34231201 TTTT  are given in 
Appendix. Given joint rotation angle, we can 
calculate the distance from the base or frame 0 
to the end-effector or frame 4 using 04T . 

 
2.2. Hardware and motion control description 

The main improvement of the OWI–535 
robot arm is to modify gear boxes, which drive 
all links. All original dc motors are replaced by 
2224SR dc motors and IE2-512 magnetic 
encoders from Faulhaber [2]. Five MCDC 
3006/06S Faulhaber motion control systems [2] 
can control five motors’ incremental position and 
speed, as shown in Fig. 4. All Faulhaber motion 
controllers can be connected with a computer 
through RS232 interface. 

 
Fig. 4 Hardware setup  
 
3. Inverse Kinematics using Resolved Motion 

Rate Control 
The Resolved Motion Rate Control 

(RMRC) using either Jacobian preudo-inverse 
and Jacobian singularity-robust inverse is a 
technique for solving the inverse kinematics of 
robot arm. In  the  first  step of this algorithm, 
initial joint angles of the OWI–535 robot arm 
must be specified, then we can calculate the 
Jocobian matrix (J), which relates the angular 

speed of i joint ( i

•

θω  or  i ) to the end-effector or 
4th-link velocity (V4), as shown in Eq. (1) below  
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In the second step, instead of solving 
inverse kinematic equation mathematically from 
the geometric of this 5-axis robot arm, the 
RMRC technique can compute joint rotation 
speed ( iθ ) at each time step, given the end-
effector desired position and velocity. Joint 
angular velocity can be written as a linear 
combination of desired end-effector velocity and 
end-effector position error multiplying with the 
Jacobian inverse, as shown in Eq. (2). 

( )( )xxKxJ dd −+= − && 1θ        (2) 
where K is a gain coefficient for adjusting a 
convergence speed of the actual robot arm 
position. The larger the K coefficient is, the 
faster the actual end-effector position converges 
to the desire end-effecotr position. Using the 
forward kinematics, the end effectors position 
(X4) at different time steps can be computed 

from joints’ rotational angle by integrating θ&  
from Eq. (2) using the Euler integration.  
 The RMRC technique employs the 
Jacobian inverse, 1−J . In this work, two types of 
Jacobian inverse are used in the RMRC 

technique. The Jacobian pseudo-inverse ( #J ) 
can be implemented easily from Eq. (3), 
however a singularity of matrix inverse might 
occur in some configurations  

                 ( ) 1# −
= TT JJJJ        (3) 

To avoid the singularity in Jacobian pseudo-
inverse computation, the Jacobian singularity-
robust inverse ( ∗J ) [4] in Eq. (4) incorporates 
an additional diagonal gain matrix such that the 
trajectory will deviate from the singular 
configuration.   
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( )TJJdet=ω  and ( )00 ,kω  are constants. 
When 00 =ω  or 00 =k , the Jacobian 
singularity-robust inverse becomes the Jacobian 
pseudo inverse. Using Matlab, the motion 
trajectories of the robot arm can be generated 
after solving the inverse kinematics problem. 
Then, the RMRC technique is implemented on 
the OWI-535 robot arm and a parameters’ effect 
is examined. 
 

4. Simulation Results of RMRC Technique 
Combining the RMRC technique with 

Euler integration, the inverse kinematics in Eq. 

(2) can be solved for joint rotation angles ( iθ ). 
In the following examples, integration time step 
(dt) of the Euler integration is 0.01 second. In 
the pick-and-place simulation, a object is 
assumed to originally locate at position of 
(15,15,3) cm, then the robot arm moves this 
object to a new position of (15,-15,3) cm. The 
initial joint angle ( 4321 ,,, θθθθ ) = (0.01,π/2,0,0). 

 
Fig. 5 The trajectory of robot arm using the 

RMRC technique using #J  with K = 2 at every 
0.1 second from position of (0,0,31.1) cm to 
position of (15,15,3) cm.  
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Fig. 6 The trajectory of robot arm using the 

RMRC technique using #J  with K = 2 at every 
0.1 second from position of (15,15,3) to position 
of (15,-15,3) cm.  
 

Fig. 5 and 6 show Matlab simulation 

results of the RMRC technique using #J  to 
calculate joint rotation angles at every 0.1 
second. Then, we substitute joint angles into 
Jacobian in Eq. (1) to compute joints’ position in 
forward kinematics equations. In the first section 
(0˂ t ≤5 second), the robot arm moves from the 
initial position (x01,y01,z01) = (0,0,31.1) cm to the 
first desired position (xd1,yd1,zd1) = (15,15,3) cm, 
as shown in Fig. 5 and 7. In the second section 
(5˂ t ≤10 second), the robot arm moves from 
the first desired position (xd1,yd1,zd1) = (15,15,3) 
to the second desired position (xd2,yd2,zd2) = (15,-
15,3) cm as shown in Fig. 6 and 8. Both 
trajectories in the first and second sections in 
Fig. 5 and 6 use the gain, K, of 2. To speed up 
motion trajectories from initial to desired 
positions, K is set to 10, as shown in Fig. 7 and 
8, thus, the end effector reaches the desired 
position in fewer time steps. In addition, the 
initial position (x01,y01,z01) is a singular 
configuration because it locates at a boundary of 
the reachable workspace. As a result, the RMRC 

technique using #J  causes the robot arm to 
approach (xd1,yd1,zd1) with the full extension of 
link 2 and 3, which is close to a singularity. 
However, using ∗J  in the RMRC technique, the 
motion trajectory is deviated from the singularity 
because the gain k1 in Eq. (4) prevents the 

inverse of ( )IkJJ T
1+  to approach infinity near 

the singularity. Moreover, in the first section, all 
joints’ velocity is much smaller when comparing 
Fig. 7 with Fig. 5.  

 

 
Fig. 7 The trajectory of robot arm using the 
RMRC technique using ∗J  with K = 10 at every 
0.1 second from position of (0,0,31.1) cm to 
position of (15,15,3) cm. 
 

 
Fig. 8 The trajectory of robot arm using the 
RMRC technique using ∗J  with K = 10 at every 
0.1 second from position of (15,15,3) to position 
of (15,-15,3) cm. 
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Fig. 9 Using #J , end-effector trajectory (top) 
and position error (bottom) of the 1st section with 
K = 2. 

 
Fig. 10 Using #J , end-effector trajectory (top) 
and position error (bottom) of the 1st section with 
K = 10. 

 
Fig. 11 Using ∗J , end-effector trajectory (top) 
and position error (bottom) of the 1st section with 
K = 2. 

 
Fig. 12 Using ∗J , end-effector trajectory (top) 
and position error (bottom) of of the 1st section 
with K = 10. 
 

We also examine the end-effector 
trajectory as well as x-,y-,z-axis position error in 

the first section using #J  with K = 2 and 10, as 
shown in Fig. 9 and 10 respectively, and using 

∗J  with K = 2 and 10, as shown in Fig. 11 and 
12. With a large gain, K, the end-effector 
position error quickly converges to zero. The 

RMRC technique using #J  has larger end-
effector’s and joints’ velocities than that using 

∗J . Especially, using #J  with K = 10 in the 
first section, there exist a large oscillation when 
this robot arm is close to the singularity initially, 
as shown in Fig. 10. However, the motion 
trajectory as well as joints’ velocity becomes 
smoother in Fig. 11 and 12. In the second 
section, when the robot arm is away from the 
singularity configuration, the motion trajectories 

using both #J  and ∗J  are continuous and very 
smooth, as seen in Fig. 13 and 14. Notice that 
the position errors in x-,y-and z-axis converge to 
zero eventually. 
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Fig. 13 Using #J , end-effector trajectory (top) 
and position (bottom) of of the 2nd section with K 
= 2. 

 
Fig. 14 Using #J , end-effector trajectory (top) 
and position error (bottom) of of the 2nd section 
with K = 10. 
 
5. Experimental Results of RMRC Technique 

 The pick-and-place operation of the 
OWI-535 robot arm, similar to the simulation 
scenario, is implemented with “Faulhaber Motion 
Manager” software in VBscript language. The 
RMRC technique using the Jacobian singularity-
robust inverse combining with forward kinematic 
are developed in Motion Manager to control the 
end-effector position. Because of a limitation of 
Motion Manager software that operates each 
individual motor sequentially, the end effector 
can not follow the desired speed. Nonetheless, 
the robot arm approaches the desired end-

effector position accurately. Motion trajectories 
starts from the same initial position (x01,y01,z01), 
as shown in Fig. 15, and moves to the first 
desired position (xd1,yd1,zd1), as shown in Fig. 16, 
and then moves to the second desired position 
(xd2,yd2,zd2), as shown in Fig. 17. 
 

 
Fig. 15 End effector of OWI robot arm located at 
the initial position (x01,y01,z01). 
 

 
Fig. 16 End effector of OWI robot arm located at 
the first desired position (xd1,yd1,zd1). 

 

 
Fig. 17 End effector of OWI robot arm located at 
the second desired position (xd2,yd2,zd2). 
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6. Summary 
The inverse kinematics problem of the 

OWI-535 robot arm has been implemented with 
the resolved motion rate control (RMRC) 
technique both in Matlab for pick-and-place 
simulations and in Faulhaber Motion Manager 
software for motion trajectory of the actual OWI-
535 robot arm. The joints’ position of simulation 
results agrees well with that of the actual OWI 
robot arm. In the RMRC method, the Jacobian 
pseudo inverse might lead to the singular 
configuration, but the Jacobian singularity-robust 
inverse prevents the robot arm to approach the 
singularity. 
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9. Appendix 
  The transformation matrices from joint 0 
to 1 )( 01T , from joint 1 to 2 )( 12T , from joint 2 
to 3 )( 23T , from joint 3 to 4 )( 34T  can be 
written below. 
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